Peer-reviewed publications
- Masterson, A.; Chowdhury, N.; Yang, F.; Yip-Schneider, M.; Hati, S.; Gupta, P.; Cao, S.; Wu, H.; Schmidt, C. M.; Fishel, M.; *Sardar, R. Amplification-Free, High-throughput Nanoplasmonic Quantification of Circulating microRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens. 2023, 8, 1085-1100.
https://pubs.acs.org/doi/10.1021/acssensors.2c02105 - Reyes Fernandez, P.C..; Wright, C.S.; Masterson A.N.; Yi X.; Tellman, T.V.; Bonteanu, A.; Rust, K.; Noonan, M.L.; White K.E.; Lewis K.J.; Sankar U.; Hum, J.M.; Bix, G.; Wu, D.; Robling, A.G.; Sardar, R.; Farach-Carson; M.C.; *Thompson, W.R. Gabapentin Disrupts Binding of Perlecan to the α2δ1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules 2022, 12, 1857-1879.
https://www.mdpi.com/2218-273X/12/12/1857 - Davis, G. A.; Prusty, G.; Hati, S.; Lee, J. T.; Langlais, S. R.; Zhan, X., *Sardar, R. Design of Anisotropically-Shaped Plasmonic Nanocrystals from Ultrasmall Sn-Decorated In2O3 Nanoclusters Used as Seed Materials. J. Phys. Chem. C 2022, 126, 21438-21452.
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.2c06572 - Lee, J. T.; Das, D.; Davis, G. A.; Hati, S.; *Ramana, C.V.;*Sardar, R. Inorganic-organic interfacial electronic effects in ligand-passivated WO3-x nanoplatelets induce tunable plasmonic properties for smart windows. ACS Appl. Nano Mater. 2022, 5, 9970-9980. (J.T.L. and D.D. contributed equally to this work)
https://doi.org/10.1021/acsanm.2c02218 - Masterson, A. N.; *Sardar, R. Selective detection and ultrasensitive quantification of SARS-CoV-2 IgG antibodies in clinical plasma samples using epitope-modified nanoplasmonic biosensing platforms. ACS Appl. Mater. Interfaces 2022, 14, 26517-26527.
https://doi.org/10.1021/acsami.2c06599 - Lee, J. T.; Hati, S.; Fahey, M.; Zaleski, J.; *Sardar, R. Surface ligand control enhancement of carrier density in plasmonic tungsten oxide nanocrystals: Spectroscopic observation of trap-state passivation via multidentate metal-phosphonate bonding. Mater. 2022, 34, 3053-3066.
https://doi.org/10.1021/acs.chemmater.1c04042 - Lee, J. T.; Wyatt, B. C.; Davis, G. A.; Masterson, A. N.; Pagan, A. L.; Shah, A.; *Anasori, B.; *Sardar, R. Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano 2021, 15, 19600-19612. (J.T.L. and W.B.C. contributed equally to this work).
https://doi.org/10.1021/acsnano.1c06670 - Hati, S.; Langlais, S. R.; Masterson, A. N.; Liyanage, T.; Muhoberac, B. B.; Kaimakliotis, Johnson, M.; *Sardar, R. Photoswitchable machine-engineered plasmonic nanosystem with high optical response for ultrasensitive detection of microRNAs and proteins adaptively. (S.H. and S.R.L. contributed equally to this work). Anal. Chem. 2021, 93, 13935-13944.
https://doi.org/10.1021/acs.analchem.1c02990 - Lee, J, T.; Seifert, S.; *Sardar, R. Colloidal synthesis of single layer quasi-Ruddlesden-Popper phase bismuth-based two-dimensional perovskite nanosheets with controllable optoelectronic properties. Mater. 2021, 33, 5917-5925.
https://doi.org/10.1021/acs.chemmater.1c00857 - Masterson, A. N.; Muhoberac, B. B.; Gopinathan, A.; #Wilde, D. J.; Deiss, F. T.; John, C. C.; *Sardar, R. Multiplexed and high-throughput label-free detection of RNA/Spike Protein/IgG/IgM biomarkers of SARS-CoV-2 infection utilizing nanoplasmonic biosensors. Chem. 2021, 93, 8754-8763.
https://doi.org/10.1021/acs.analchem.0c05300 - Masterson, A. N.; Hati, S.; Ren, G. J.; Liyanage, T.; Manicke, N.; Goodpaster, J. V.; *Sardar, R. Enhancing non-fouling and sensitivity of surface-enhanced Raman scattering substrates for potent drug analysis in blood plasma via fabrication of flexible plasmonic patch. Chem. 2021. 93, 2578-2588. (No. of Citation = 4)
https://doi.org/10.1021/acs.analchem.0c04643 - Liyanage, T.; Masterson, A. N.; Hati, S.; Ren, G. J.; Manicke, N.; Rusyniak, D.; *Sardar, R. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients’ plasma. Analyst, 2020, 145, 7662-7672. (No. of Citation = 4)
https://doi.org/10.1039/D0AN01372B - Masterson, A. N.; Liyanage, T.; Kaimakliotis, H.; Derami, H. G.; Deiss, F.; *Sardar, R. Bottom-up fabrication of plasmonic nanoantenna-based high-throughput multiplexing biosensors for ultrasensitive detection of microRNAs directly from cancer patients’ plasma. Chem. 2020. 92, 9295-9304. (No. of Citation = 3)
https://doi.org/10.1021/acs.analchem.0c01639 - Masterson, A. N.; Liyanage, T.; #Berman, C. E.; Kaimakliotis, H.; Johnson, M. A.; *Sardar, R. A novel liquid biopsy-based approach for highly specific cancer diagnostics: Mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses. Analyst, 2020, 145, 4173-4180. (A.N.M. and T.L contributed equally to this work). (No. of Citation = 11)
https://doi.org/10.1039/D0AN00538J
- Prusty, G.; Lee, J. T.; Seifert, S.; Muhoberac, B. B.; *Sardar, R. Ultrathin plasmonic tungsten oxide quantum wells with controllable free carrier densities. Am. Chem. Soc. 2020, 142, 1526-1536. (G.P. and J.T.L contributed equally to this work). (No. of Citation = 14)
https://doi.org/10.1021/jacs.9b13909
- Liyanage, T.; Nagaraju, M.; Johnson, M. A.; Muhoberac, B. B.; *Sardar, R. Reversible tuning of the plasmoelectric effect in noble metal nanostructures through manipulation of organic ligand energy levels. Nano Lett. 2020, 20, 192-200. (No. of Citation = 13)
https://doi.org/10.1021/acs.nanolett.9b03588
- Yang, Y.; Lee, J. T.; Liyanage, T.; *Sardar, R. Flexible polymer-assisted mesoscale self-assembly of colloidal CsPbBr3 perovskite nanocrystals into higher order superstructures with strong inter-nanocrystal electronic coupling. Am. Chem. Soc. 2019, 141, 1526-1536. (Y.Y. and J.T.L contributed equally to this work). (No. of Citation = 17)
https://doi.org/10.1021/jacs.8b10083
- Liyanage, T.; Masterson, A. N.; Oyem, H. H.; Kaimakliotis, H.; #Nguyen, H.; *Sardar, R. Plasmoelectronic-based ultrasensitive assay of tumor suppressor microRNAs directly in patient plasma: Design of highly specific early cancer diagnostic technology. Chem. 2019, 91, 1894-1903. (No. of Citation = 14)
https://doi.org/10.1021/acs.analchem.8b03768
- Liyanage, T.; Rael, A.; #Shaffer, S.; #Zaidi, S.; Goodpaster, J. V.; *Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst, 2018, 143, 2012-2022. (No. of Citation = 56)
** Front Cover Page
https://doi.org/10.1039/C8AN00008E
- Telfah, H.; Jamhawi, A.; Teunis, M. B.; Sardar, R.;*Liu, J. Ultrafast exciton dynamics in shape-controlled methylammonium lead bromide perovskite nanostructures: Effect of quantum confinement on charge carrier recombination. Phys. Chem. C, 2017, 121, 28556-28565. (No. of Citation = 21)
** Featured as one of the "most-accessed" article
https://doi.org/10.1021/acs.jpcc.7b10377
- Teunis, M. B.; Liyanage, T.; Dolai, S.; Muhoberac, B. B.; *Sardar, R. *Agarwal, M. Unraveling the mechanism underlying surface ligand passivation of colloidal semiconductor nanocrystals: A route for preparing advanced hybrid nanomaterials. Mater. 2017, 29, 8838-8849. (No. of Citation = 13)
https://doi.org/10.1021/acs.chemmater.7b03240
- Teunis, M. B.; Nagaraju, M.; Dutta, P.; Pu, J.; Muhoberac, B. B.; *Sardar, R. *Agarwal, M. Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules. Nanoscale 2017, 8, 14127-14138. (No. of Citation = 11)
https://doi.org/10.1039/C7NR04874B
- Liyanage, T.; #Sangha, A.; *Sardar, R. Achieving biosensing at attomolar concentrations of cardiac troponin T in human biofluids by developing a label-free nanoplasmonic analytical assay. Analyst 2017, 142, 2442-2450. (No. of Citation = 13)
https://doi.org/10.1039/C7AN00430C
- Teunis, M. B.; Johnson, M. A.; Muhoberac, B. B.; *Sardar, R. Programmable colloidal approach to hierarchiral structures of methylammonium lead bromide perovskite nanocrystals with bright photoluminescent properties. Mater. 2017, 29, 3562-3537. (No. of Citation = 30)
** Featured as one of the "most-accessed" article
https://doi.org/10.1021/acs.chemmater.6b05393
- Joshi, G. K.; White, S, L.; Johnson, M. A.; *Sardar, R.; *Jain, P. K. Ultrashort, angstrom-scale decay of surface enhanced Raman scattering hot spots. Phys. Chem. C 2016, 120, 24973-24981. (No. of Citation = 15)
https://doi.org/10.1021/acs.jpcc.6b08242
- Teunis, M. B.; Lawrence, K. N.; Dutta, P.; Siegel, A. P.; *Sardar, R. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters. Nanoscale 2016, 8, 17433-17439. (No. of Citation = 39)
https://doi.org/10.1039/C6NR06036F
- Lawrence, K. N.; Dutta, P.; Nagaraju, M.; Teunis, M. B.; Muhoberac, B. B.; *Sardar, R. Dual Role of electron-accepting metal-carboxylate ligands: Reversible expansion of exciton delocalization and passivation of nonradiative trap-states in molecule-like CdSe nanocrystals. Am. Chem. Soc. 2016, 138, 12813-12825. (No. of Citation = 27)
https://doi.org/10.1021/jacs.6b04888
- Teunis, M. B.; Jana, A.; Dutta, P.; Johnson, M. A.; Mandal, M.; Muhoberac, B. B; *Sardar, R. Mesoscale growth and assembly of bright luminescent organolead halide perovskite quantum wires. Mater. 2016, 28, 5043-5054. (No. of Citation = 51)
** Featured as one of the "most-accessed" article
https://doi.org/10.1021/acs.chemmater.6b01793
- Jana, A.; Lawrence, K. N.; Teunis, M. B.; Mandal, M.; Kumbhar, A.; *Sardar, R. Investigating the control by quantum confinement and surface ligand coating of photocatalytic efficiency in chalcopyrite copper indium diselenide nanocrystals. Mater. 2016, 28, 1107-1120. (A.J. and K.N.L. contributed equally to this work). (No. of Citation = 24)
https://doi.org/10.1021/acs.chemmater.5b04521
- Joshi, G. K.; Deitz-McElyea, S.; Liyanage, T.; Lawrence, K. N.; $Mali, S.; *Sardar, R.; *Korc, M. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentration allows for quantitative assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano. 2015, 9, 11075-11089. (No. of Citation = 149)
** Featured as one of the "most-accessed" article
https://doi.org/10.1021/acsnano.5b04527
- Lawrence, K. N.; Johnson, M. A.; Dolai, S.; Kumbhar, A.; *Sardar, R. Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly. Nanoscale 2015, 7, 11667-11677. (No. of Citation = 17)
https://doi.org/10.1039/C5NR02038G
- Dolai, S.; Dutta, P.; Muhoberac, B. B.; #Irving, C. D.; *Sardar, R. Mechanistic study of the formation of bright white light-emitting ultrasmall CdSe nanocrystals: Role of phosphine free selenium precursors. Mater. 2015, 27, 1057-1070. (No. of Citation = 45)
https://doi.org/10.1021/cm5043638
- Xie, Y.; Teunis, M. B.; Pandit, B.; *Sardar, R.; *Liu, J. Molecule-like CdSe nanoclusters passivated with strongly interacting ligands: Energy level alignment and photoinduced ultrafast charge transfer processes. Phys. Chem. C 2015, 119, 2813-2821. (No. of Citation = 23)
https://doi.org/10.1021/jp510276c
- Joshi, G. K.; Deitz-McElyea, S.; Johnson, M. A.; $Mali, S.; *Korc, M.; *Sardar, R. Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Nano Lett. 2014, 14, 6955-6963. (No. of Citation = 99)
https://doi.org/10.1021/nl503220s
- Lawrence, K. N.; Dolai, S.; Lin, Y,-H.; Dass, A.; *Sardar, R. Enhancing the physicochemical and photophysical properties of small (<2.0 nm) CdSe nanoclusters for intracellular imaging applications. RSC Adv. 2014, 4, 30742-30753. (No. of Citation = 13)
https://doi.org/10.1039/C4RA02549K
- Teunis, M. B.; Dolai, S.; *Sardar. R. Effects of surface passivating ligands and ultrasmall CdSe nanocrystal size on delocalization of exciton confinement. Langmuir 2014, 30, 7851-7858. (No. of Citation = 40)
https://doi.org/10.1021/la501533t
- Joshi, G. K.; Johnson, M. A.;*Sardar, R. Novel pH-responsive nanoplasmonic sensor: controlling polymer structural change to modulate localized surface plasmon resonance response. RSC Adv. 2014, 4, 15807-15815. (No. of Citation = 18)
https://doi.org/10.1039/C4RA00117F
- Joshi, G. K.; #Blodgett, K. N.; Muhoberac, B. B.; Johnson, M. A.; #Smith, K. A.; *Sardar, R. Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas. Nano Lett. 2014, 14, 532-540. (No. of Citation = 101)
https://doi.org/10.1021/nl403576c
- Dolai, S.; Nimmala, P. R.; Mandal, M.; Muhoberac, B. B.; Dria, K.; Dass, A.; *Sardar, R. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry. Mater. 2014, 26, 1278-1285. (No. of Citation = 62)
https://doi.org/10.1021/cm403950f
- #Dennis, N. W.; Muhoberac, B. B.; #Newton, J. C.; Kumbhar, A. *Sardar, R. Correlated optical spectroscopy and electron microscopy studies of the slow Ostwald-ripening growth of silver nanoparticles under controlled reducing conditions. Plasmonics 2014, 9, 111-120. (No. of Citation = 10)
- Joshi, G. K.; #Smith, K. A.; Johnson, M. A.; *Sardar, R. Temperature-controlled reversible localized surface plasmon resonance response of polymer-functionalized gold nanoprisms in the solid state. Phys. Chem. C 2013, 117, 26228-26237. (No. of Citation = 34)
https://doi.org/10.1021/jp409264w - Dolai, S.; Dass, A.; *Sardar, R. Photophysical and redox properties of molecule-like CdSe nanoclusters. Langmuir 2013, 29, 6187-6193. (No. of Citation = 22)
https://doi.org/10.1021/la401437r
- Joshi, G. K.; #McClory, P.; Muhoberac, b. B.; Kumbhar, A.; #Smith, K. A.; *Sardar, R. Designing efficient localized surface Plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms. Phys. Chem. C 2012, 116, 20990-21000. (No. of Citation = 58)
https://doi.org/10.1021/jp302674h
- Joshi, G. K.; #McClory, P.; Dolai, S.; *Sardar, R. Improved localized surface plasmon resonance biosensing sensitivity using chemically synthesized gold nanoprisms as plasmonic transducers. Mater. Chem. 2012, 22, 923-931. (No. of Citation = 56)
https://doi.org/10.1039/C1JM14391C
- #Newton, J. C.; Ramasamy, K.; Mandal, M.; Joshi, G. K.; Kumbhar, A.; *Sardar, R. Low temperature synthesis of magic-sized CdSe nanoclusters: Influence of ligands on photophysical properties. Phys. Chem. C 2012, 116, 4380-4389. (No. of Citation = 67)
https://doi.org/10.1021/jp2086818
Peer-reviewed publications prior to IUPUI
- Shem, P. M.; Sardar, R.; *Shumaker-Parry, J. S. Soft ligand stabilized gold nanoparticles: Incorporation of bipyridyls and two-dimensional assembly. Colloid Interface Science 2014, 426, 107. (No. of Citation = 9)
- Chow, K, F.; Sardar, R.; Sassin, M. B.; Wallace, J. M.; Feldberg, S. W.; Rolison, D. R.; Long, J. W.; *Murray, R. W. 3D-Addressable redox: Modifying porous carbon electrodes with ferrocenated 2 nm gold nanoparticles. Phys. Chem. C 2012, 116, 9283. (No. of Citation = 15)
- Sardar, R.; *Shumaker-Parry, J. S. Spectroscopic and microscopic investigation of gold nanoparticle formation: Ligand and temperature effects on rate and particle size. Am. Chem. Soc. 2011, 133, 8179. (No. of Citation = 85)
** Featured as one of the "most-accessed" article - Beasley, C. A.; Sardar, R.; #Barnes, N. M.; *Murray, R. W. Persistent multilayer electrode adsorption of poly-cationic Au nanoparticles. Phys. Chem. C. 2010, 114, 18384. (No. of Citation = 10)
- Sardar, R.; Shem, P. M.; #Pecchia-Bekkum, C.; #Bjorge, N. S; *Shumaker-Parry, J. S. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials. Nanotechnology 2010, 21, 345603. Cover Highlights, Vol. 21, No. 34 August 2010. (No. of Citation = 4)
- Sardar, R.; Beasley, C. A.; *Murray, R. W. Interfacial Ion transfers between a monolayer phase of cationaic Au nanoparticles and contacting organic solvent. Am. Chem. Soc. 2010, 132, 2058. (No. of Citation = 10)
- Shem, P. M.; Sardar, R.; *Shumaker-Parry, J. S. One-Step Synthesis of Phosphine-Stabilized Gold Nanoparticles Using the Mild Reducing Agent 9-BBN. Langmuir 2009, 25, 13279. (No. of Citation = 71)
** Featured as one of the "most-accessed" article - Sardar, R.; Funston, A. M.; *Mulvaney, P.; *Murray, R. W. Gold nanoparticles: Past, present, and future. Langmuir (Perspective) 2009, 25, 13840. (No. of Citation = 1059)
** Featured as one of the "most-accessed" article - Fields-Zinna, C. A.; Sardar, R.; Beasley, C. A.; *Murray, R. W. Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au144/146{SC11H22N(CH2CH3)3}x{S(CH2)5CH3}y]+. Am. Chem. Soc. 2009, 131, 16266. (No. of Citation = 125)
- Sardar, R.; Beasley, C. A.; *Murray, R. W. Ferrocenated Au nanoparticle monolayer adsorption on self-assembled monolayer coated electrodes. Chem. 2009, 81, 6960. (No. of Citation = 25)
- Sardar, R.; *Shumaker-Parry, J. S. 9-BBN induced synthesis of nearly monodisperse w–functionalized alkylthiol stabilized nanoparticles. Mater. 2009, 21, 1167-1169. (No. of Citation = 39)
- Sardar, R.; #Bjorge, N. S; *Shumaker-Parry, J. S. pH-controlled assemblies of polymeric amine-stabilized gold nanoparticles. Macromolecules 2008, 41, 4347. (No. of Citation = 81)
- Sardar, R.; *Shumaker-Parry, J. S. Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. Nano Let 2008, 8, 731. (No. of Citation = 156)
- Sardar, R.; Park, J,-W.; *Shumaker-Parry, J. S. Polymer induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir 2007, 23, 11883. (No. of Citation = 125)
** Featured as one of the "most-accessed" article - Sardar, R.; #Heap, T. B; *Shumaker-Parry, J. S. Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. Am. Chem. Soc. 2007, 129, 5356. (No. of Citation = 212)
- *Chauhan, B. P. S.; Sardar, R.; Latif, U. Chauhan, M.; Lamoreaux, W. L. Nanoengineering of metallic solution through silicon constructs (review article). Chim. Slov. 2005, 52, 361. Cover Highlights, Vol. 52, No. 4 December 2005. (No. of Citation = 16)
- *Chauhan, B. P. S.; Sardar, R. Self-assembled stable silver nanoclusters and nanonecklaces formation: Polymethylhydrosiloxane mediated one-pot route to organosols. Macromolecules 2004, 37, 5136 Cover Highlights, Vol. 38, No. 1 January 11, 2005. (No. of Citation = 48)
- *Chauhan, B. P. S.; Rathore, J. S.; Sardar, R.; Tewari, P.; Latif, U. Synthesis, stabilization and applications of nanoscopic siloxane-metal particle conjugates. Organometal. Chem. 2003, 686, 24. (No. of Citation = 23)
Patents
- Sardar, R.; Masterson, A. N.; Hati, S.; Muhoberac, B. B. Zwitterionic surfaces for localized surface plasmon resonance, US Provisional Application no. 63/247474
- Sardar, R.; Liyanage, T.; Masterson, A.; Kaimakliotis, H. High-throughput cancer diagnostic assay using gold nanoprisms. International Application Serial No. PCT/US2019/057358
- Sardar, R.; Korc, M. Joshi, G. K. Systems and methods for localized surface plasmon resonance biosensing. US 10,858,693 B2.
- Shumaker-Parry, J. S.; Sardar, R. Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. US 7,999,025 B2.
- Shumaker-Parry, J. S.; Sardar, R. Asymmetrically Functionalized Nanoparticles. US 8,231,969 B2.
- Shumaker-Parry, J. S.; Sardar, R. Shem, P. M. Method of Synthesizing Metal Nanoparticles Using 9-borabicyclo [3.31] Nonane (9-BBN) as a Reducing Agent. U.S. Pat. Appl. Publ. 2010/227189 A1.
The Sardar Group Nanoparticle. Plasmonic. Sensing. Catalysis. resources